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Impedance of a coaxial cavity coupled to the beam pipe through a small hole
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In this paper we derive the impedance of a coaxial-line resonator coupled to the beam pipe through a small
hole. The method used takes into account the scattered fields on the aperture to calculate its electric and
magnetic dipole moments. The low-frequency impedance shows a resistive contribution accounting for the
cavity loss.@S1063-651X~97!05301-4#

PACS number~s!: 41.75.2i, 41.20.2q
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I. INTRODUCTION

The low-frequency impedance of a hole on a beam p
can be calculated applying Bethe’s diffraction theory, stat
that the hole is equivalent to a combination of radiating el
tric and magnetic dipoles and that their moments are rela
to the amplitude of the incident field. This method, bei
independent from the structure geometry outside the b
pipe, yields an imaginary impedance only@1–3#. More re-
cently, the real part of the impedance has been calcul
taking into account the energy radiated by the hole thro
propagating fields@4–6#. In this paper we calculate the im
pedance when the hole radiates into a resonant structure~Fig.
1!, as this geometry is more likely to represent prope
many cases that are encountered in practice.

II. MONOPOLE LONGITUDINAL IMPEDANCE

It has been shown@1# that the longitudinal impedance of
hole in the wall of a round beam pipe can be expressed
function of the magnetic- and electric-dipole moments,Mw
andPr , corresponding to a first-order approximation of t
scattered field. Limiting ourselves to frequencies below
pipe cutoff, we can write for a point chargeq traveling along
the pipe axis with velocityc,

Zi52 j
vZ0
2pbq S 1c Mw1Pr D . ~1!

In general, the dipole moments are given by

P5eaJe•~E01Esp2Esc!, M5aJm•~H01Hsp2Hsc!,
~2!

whereaJe andaJm are the polarizability tensors for the ape
ture,E0 andH0 are the primary field radiated by the travelin
particle ~Appendix A!, andEsp, Hsp, Esc, andHsc are the
scattered fields in the pipe and in the cavity, respectively.
the fields are evaluated at the aperture center~r5b, w50,
andz5z0!.

The modified Bethe diffraction theory@7# states that only
the modes propagating into the beam pipe and the coa
cavity resonant modes contribute to the leading imagin
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term in Eqs.~2!. Assuming that the TEM1 mode only is
resonating in the cavity, Eqs.~2! become

Pr5eae~E0r2Escr!, Mw5am'~H0w2Hscw!. ~3!

The scattered fieldsEscr and Hscw can be expressed
through the cavity eigenfunctionse1 ,h1 , and the coupling
coefficientsce1,ch1:

Escr5ce1e1 , Hscw5ch1h1 ~4!

where@7#

ce15
2 jvmk1h1Mw1v2m@11~12 j !/Q1#e1Pr

k1
22k0

2@11~12 j !/Q1#
,

ch15
jvk1e1Pr1k0

2h1Mw

k1
22k0

2@11~12 j !/Q1#
, ~5!

e1 andh1 are the TEM1 normalized mode fields calculated o
the aperture center, that is

e15
1

ApL ln~d/b!

cos~k1z0!

b
,

h152
1

ApL ln~d/b!

sin~k1z0!

b
. ~6!

Substituting Eq.~4! in Eq. ~3!, we obtain the following
linear system for the dipole moments:

FIG. 1. Coaxial resonator.
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q̃e1
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2 jam'v
k1

k̃
e1h1

jaevme
k1

k̃
e1h1

11am'

k0
2

k̃
h1
2 D S Pr

Mw
D

5S aeeE0r

amH0w
D , ~7!

where, for the sake of compactness, we have defined

q̃511
12 j

Q1
, k̃5k1

22k0
2q̃. ~8!
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After a few calculations, the longitudinal impedance
found to be

Zi52 jZKF~z0 ,v,Q1!, ~9!

where

ZK52
k0Z0
4p2b2

ae ~10!

and
F~z0 ,v,Q1!5
2~11am' /ae!1~am' /ae!h~k0

2/ k̃!@11cos2~k1z0!~ q̃21!#

12h~k0
2/ k̃!@cos2~k1z0!q̃1~am' /ae!sin

2~k1z0!1~am' /ae!h cos2~k1z0!sin
2~k1z0!#

~11!
ee

es
with

h52
ae

pb2L ln~d/b!
.

In the case of a narrow elliptical slot~w!1! with
ae52p1w2/24 and am'/ae521, the first term in the
F(z0 ,v,Q1) numerator vanishes, while the other term giv
a nonzero value for the impedance. For a round h
ae522R3/3 andam/ae522; as in the previous case, w
find an expression analogous to that derived by Kurenno
@1#, save for the factorF(z0 ,v,Q1).

In Figs. 2 and 3 the real and imaginary parts of the lo
gitudinal impedance are shown for three positions of
hole. It is worth nothing that, as the hole moves from t
middle to the side of the cavity, the impedance increa
since there is coupling through the magnetic field also. T
frequency shift of the curves can be explained in terms of
Slater theorem.

Maximum shunt impedance

It is interesting to calculate the maximum value of t
impedance in function of the positionz0 of the round hole.
Whenz050, that is the hole is at the cavity midlength, it
easy to show that the real part of the longitudinal impeda
is

ZRE5
ZKhk1

2k0
2Q1

21

@k1
22k0

2~11h!~11Q1
21!#21@k0

2~11h!Q1
21#2

~12!

and that its maximum value

ZRE,max5
ZKh~Q111!

11h
'hQ1ZK'

Z0
4

h2Q1 ln~d/b!

~13!

is reached when
s
le

in

-
e

s
e
e

e

k05
k1

A~112h!~11Q1
21!

. ~14!

The imaginary impedance is given by

ZIM'2ZKH 12hk0
2

3
k1
2~11Q1

21!2k0
2~11h!~112Q1

21!

@k1
22k0

2~11h!~11Q1
21!#21@k0

2~11h!Q1
21#2 J

~15!

so that it is zero when@Eq. ~14!# holds.
When the hole is not at the cavity midlength, we can s

from @Eq. ~9!# that for low-loss cavities andh!1,

ZRE,max~z0!

ZRE,max~z050!
5113 sin2~k1z0!. ~16!

FIG. 2. Real part of the longitudinal impedance for three valu
of z0 ~L550 mm,d524 mm,b520 mm,R54 mm, andQ152900!.
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III. DIPOLE LONGITUDINAL
AND TRANSVERSE IMPEDANCE

Proceeding in a similar manner, one can easily derive
transverse and the dipole longitudinal impedances apply
their standard definitions, provided the expressions of
dipole component of the incident field are used in the rig
hand side of the system~7!.

We obtain for a point charge with offsetr 1,w1,

Zi
n51~r ,w!52 j

2k0Z0
3p2

R3

b4
F~z0 ,v,Q1!rr 1cosw cosw1

~17!

and

Z'52 j
2Z0
3p2

R3

b4
F~z0 ,v,Q1!cosw1r̂ . ~18!

Again, we find the same expressions found by Kurenn
but for the factorF(z0 ,v,Q1).

IV. CONCLUSIONS

Applying the modified Bethe theory of diffraction to
hole radiating into a bounded space, we obtain that
Kurennoy impedance of a round hole is corrected by a co
plex coupling factor depending on the geometry and elec
magnetic properties of the outer structure. The correc
factor has been calculated for the case of a resonant co
structure, and the most relevant features of the lo
frequency coupling impedance have been investigated.

APPENDIX A

The fields produced by a point chargeq traveling inside a
perfectly conducting cylindrical pipe with velocitycẑ can be
expressed as a sum of multipole terms@8#. The low-
frequency expression of the first~monopole! term on the pipe
surface is

FIG. 3. Imaginary part of the longitudinal impedance for thr
values ofz0 ~L550 mm, d524 mm, b520 mm,R54 mm, and
Q152900!.
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E0r~r5b,w50!5Z0
q

2pb
,

H0w~r5b,w50!5
q

2pb
, ~A1!

while the second~dipole! term is given by

E0r
n51~r5b,w50!5Z0

q

2p2b2
r 1cosw1 ,

H0w
n51~r5b,w50!5

q

2p2b2
r 1cosw1 . ~A2!

APPENDIX B

The quality factor for a coaxial-line cavity of lengthL and
radii b andd, resonating in the TEM1 mode, is

Q15
2L

d„41L~11d/b!/d ln~d/b!…
. ~B1!

The skin depthd has the following expression:

d5&
c

v
@A11~s/ve!221#21/2, ~B2!

wheres is the conductivity of the cavity walls.

APPENDIX C

The resonant modes of a coaxial cavity can be obtai
from the modes propagating into a coaxial line, with t
additional condition of null tangential electric field and no
mal magnetic field on the end plates (z56L/2).

The following modes are found.
TEM modes,

el5Cl

cos~klz!

r
r̂ ,

hl52Cl

sin~klz!

r
ŵ. ~C1!

TE modes,

en,m,l5Cn,m,l S 2
n

r
@Jn#cos~nw!cos~klz! r̂

1kt~n,m!@Jn8#sin~nw!cos~klz!ŵD ,
hn,m,l5Cn,m,l S 2

kt~n,m!kl
vm

@Jn8#sin~nw!sin~klz! r̂

2
kl

vm

n

r
@Jn#cos~nw!sin~klz!ŵ

1
kt~n,m!
2

jvm
@Jn#sin~nw!cos~klz!ẑD . ~C2!
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TM modes,

en,m,l5Cn,m,l S 2
kt~n,m!

ve
@Jn8#cos~nw!cos~klz! r̂

1
1

ve

n

r
@Jn#sin~nw!cos~klz!ŵ

1
1

jve

kt~n,m!
2

kl
@Jn#cos~nw!sin~klz!ẑD ,

hn,m,l5Cn,m,l S 2
1

kl

n

r
@Jn#sin~nw!sin~klz! r̂1

2
kt~n,m!

kl
@Jn8#cos~nw!sin~klz!ŵD . ~C3!

In the above expressions~C1!-~C3! we have defined
k15 lp/L and

@Jn#5Jn~kt~n,m!r !

1H 2
Jn8~kt~n,m!b!

Yn8~kt~n,m!b!
Yn~kt~n,m!r !, TEn,m,l

2
Jn~kt~n,m!b!

Yn~kt~n,m!b!
Yn~kt~n,m!r !, TMn,m,l ,
ys
@Jn8#5Jn8~kt~n,m!r !

1H 2
Jn8~kt~n,m!b!

Yn8~kt~n,m!b!
Yn8~kt~n,m!r !, TEn,m,l

2
Jn~kt~n,m!b!

Yn~kt~n,m!b!
Yn8~kt~n,m!r !, TMn,m,l .

~C4!

The kt’s in @Eq. ~C4!# are 1/b times the zeros of@Jn8# ~TE
modes! and of [Jn] ~TM modes!, calculated forr5b.

The normalization factorsCl andCn,m,l are found from
the condition

E
b

dE
0

2pE
2L/2

1L/2

uen,m,l u2r dr dw dz51 ~C5!

for the TEM1 modeC15@pL ln(d/b)#21/2.
s.
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