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Impedance of a coaxial cavity coupled to the beam pipe through a small hole
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In this paper we derive the impedance of a coaxial-line resonator coupled to the beam pipe through a small
hole. The method used takes into account the scattered fields on the aperture to calculate its electric and
magnetic dipole moments. The low-frequency impedance shows a resistive contribution accounting for the
cavity loss.[S1063-651X97)05301-4

PACS numbews): 41.75-i, 41.20—q

I. INTRODUCTION term in Egs.(2). Assuming that the TEMmode only is
resonating in the cavity, Eq$2) become
The low-frequency impedance of a hole on a beam pipe
can be calculated applying Bethe’s diffraction theory, stating Pr=€ae(Eor—Ese), My=am (Ho,—Hsg). (3
that the hole is equivalent to a combination of radiating elec-
tric and magnetic dipoles and that their moments are related The scattered field€E,,, and He, Can be expressed

to the amplitude of the incident field. This method, beinghrough the cavity eigenfunctions,,h,, and the coupling
independent from the structure geometry outside the beagyefficientsc

,Chit
pipe, yields an imaginary impedance onlfi~3]. More re- et
cently, the real part of the impedance has been calculated _ _
taking into account the energy radiated by the hole through Esor=Cer€r,  Hsor=Cnafly @
propagating field§4—6]. In this paper we calculate the im- h 7
pedance when the hole radiates into a resonant strucige where7]
1), as this geometry is more likely to represent properly . ) )
many cases that are encountered in practice. o —jopkiM ot o u[1+(1-))/Q]e. P,
. ki K3[L1+(1-])/Q1] !
Il. MONOPOLE LONGITUDINAL IMPEDANCE
H 2

It has been showfi] that the longitudinal impedance of a - jwkiePrt+koh M, ®)

hole in the wall of a round beam pipe can be expressed as a hi kZ—kg[1+(1—j)/Q]"

function of the magnetic- and electric-dipole moments,

andP,, corresponding to a first-order approximation of thee, andh, are the TEM normalized mode fields calculated on
scattered field. Limiting ourselves to frequencies below thene aperture center, that is

pipe cutoff, we can write for a point chargetraveling along

the pipe axis with velocity,

1 cogk,2q)
e =
Z 1 1 b ’
Z=—] 220 (2 ovp |, ) JarL In(d/b)
2mbgl\c ¢
In general, the dipole moments are given by hy=— 1 sin(k1Zo) ©6)

J@L In(d/b) b

Substituting Eq.(4) in Eqg. (3), we obtain the following
wherea, and a,, are the polarizability tensors for the aper- linear system for the dipole moments:

ture,Eq andH are the primary field radiated by the traveling
particle (Appendix A), and Eg,, Hgp, Ege, andHg. are the
scattered fields in the pipe and in the cavity, respectively. All | 2R d I
the fields are evaluated at the aperture cefiterb, ¢=0, f t
andz=z). - p— >

The modified Bethe diffraction theofy] states that only

the modes propagating into the beam pipe and the coaxial | I
cavity resonant modes contribute to the leading imaginary

P= E&e-(E0+ Esp_ES(‘)l M:&m‘(HO"'Hsp_HSJ'( )
2

"1L/2 z=0 L/2

* Author to whom correspondence should be addressed. FIG. 1. Coaxial resonator.
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g Ky After a few calculations, the longitudinal impedance is
1+a, = qe?  jaewue = eh found to be
e K qe; Jagou K 1M1 P,
2 M .
—jamwflelhl 1+any, fohf ¢ Z)=—]ZxF(29,0,Qy), 9)
~ ( aefEOr) @ where
amHO(,D ,
koZ
where, for the sake of compactness, we have defined Zy=— ﬁ%g e (10
a=1+1—_j k=k2— k2 ®)
Qi '’ Lo and
|
. — (Lt g, [ae) + (am, /ae) n(kg/K)[ 1+c0g(kyZ0)(G—1)] a
Z b L = ~ . .
(20,@.Qu)= 2(K&/K)[ CO2(K12o) T+ (am / ae) SIP(K1Z0) + (i [ ate) 17 COR(K1Z0)SiP(Kq2Z0) ]
|
with kl
ko= —. (14
. V1+29)(1+Q Y
T~ 2L In(dib)
The imaginary impedance is given by
In the case of a narrow elliptical slotw<1) with
ae=—mIW?/24 and a, /a,=—1, the first term in the
F(zy,»,Q;) numerator vanishes, while the other term gives Zm~—Zy!| 1— 7k2
a nonzero value for the impedance. For a round hole 0
ae=—2R%3 and a,/a,=—2; as in the previous case, we 9 Z1e 2 1
find an expression analogous to that derived by Kurennoy in ki(1+Q; ) —ka(1+7)(1+2Q, )
[1], save for the factoF(zg,,Q;). [ki—k3(1+ 7)(1+Q; H1?+[ka(1+ 7)Q; 112
In Figs. 2 and 3 the real and imaginary parts of the lon- (15)

gitudinal impedance are shown for three positions of the

hole. It is worth nothing that, as the hole moves from the

middle to the side of the cavity, the impedance increase§0 that it is zero whefiEq. (14)] holds.
since there is coupling through the magnetic field also. The When the hole is not at the cavity midlength, we can see
frequency shift of the curves can be explained in terms of thérom [Eq. (9)] that for low-loss cavities angr<1,

Slater theorem.

ZRe, mak Zo) .
Maximum shunt impedance Zre i 20=0) 1+ 3 sirf(kqzo). (16)

It is interesting to calculate the maximum value of the
impedance in function of the positiar, of the round hole.
Whenz,=0, that is the hole is at the cavity midlength, it is
easy to show that the real part of the longitudinal impedance
is

Re(Z) (Ohm)
254 z 0=L/2

) Z h3GQ; 1
ERETTIZIE(1+ )(1+ Q; D P+ KL+ 7)Q; T
(12

zo=L/4

) ) Zo=0
and that its maximum value

f(Qz2)

Zgn(Q1+1)
1+

Z
~ 77Q12K~ZO 7°Q4 In(d/b) 2990 2995 3000 3005 3010
(13

ZRE,max:

FIG. 2. Real part of the longitudinal impedance for three values
is reached when of zg (L=50 mm,d=24 mm,b=20 mm,R=4 mm, andQ;=2900.
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_ o q
Im(z) (Ohm) Eor(r=0,0=0)=20 5.
10 zo=L/2
zo=L/4 q
AL Hoo(r=b,¢=0)=o—, (A1)
z o=0 v
/\ 0 ‘ fEGHz)
2.990 5 300 FoFe— while the seconddipole) term is given by
-0.5
- q
1.0 ES Y(r=b,e=0)=2, 522 160Sp1,
15
n=1 q
Hoe (r:byﬁD:O):—zwzbz r1COoSp; . (A2)

FIG. 3. Imaginary part of the longitudinal impedance for three
values ofzy (L=50 mm,d=24 mm,b=20 mm,R=4 mm, and
Q,=2900.

Ill. DIPOLE LONGITUDINAL
AND TRANSVERSE IMPEDANCE

Proceeding in a similar manner, one can easily derive the Q.= 2L . (B1)
transverse and the dipole longitudinal impedances applying 8(4+L(1+d/b)/d In(d/b))
their standard definitions, provided the expressions of thq_h kin denths has the followi .
dipole component of the incident field are used in the right- € Skin dep as the foflowing expression.
hand side of the systelT). c
We obtain for a point charge with offsef,¢,, 5=vV2 — [‘/1+(0/w6)2_ 1172 (B2)
w
1 2koZo R® whereo is the conductivity of the cavity walls.
ZH B (r!(P): _J W F F(201w1Ql)rrlcoqu COSPl
(17) APPENDIX C
The resonant modes of a coaxial cavity can be obtained
and from the modes propagating into a coaxial line, with the
additional condition of null tangential electric field and nor-
5 mal magnetic field on the end plates<+L/2).
7 —_ 2Zy R° F( Jcosp,F 18) The following modes are found.
1= 71 32 7 F(Zo,@.Qu)coseyr. TEM modes,
cogkz) .
Again, we find the same expressions found by Kurennoy, a=¢ Y r,
but for the factorF(zy,w,Q,).
sin(k;z) ..
1=—C ®. (C1)
IV. CONCLUSIONS r
Applying the modified Bethe theory of diffraction to a  TE modes,
hole radiating into a bounded space, we obtain that the
Kurennoy impedance of a round hole is corrected by a com- _ n "
plex coupling factor depending on the geometry and electro- &,mi=Cnmi| — 1 [Jnlcodne)codkz)r
magnetic properties of the outer structure. The correcting
factor has been calculated for the case of a resonant coaxial K I1si k2)e
structure, and the most relevant features of the low- wnmlJnlsin(ne)coskz)e),
frequency coupling impedance have been investigated.
K(n,m)k, _ .
hn,m,l = Cn,m,l - [Jn]5|n(n<p)sm(k|z)r
APPENDIX A w
The fields produced by a point chargdraveling inside a _ ﬁ n - -
perfectly conducting cylindrical pipe with velocityz can be op I [Inlcosng)sintkz)¢
expressed as a sum of multipole terrf8]. The low- )
frequency expression of the fighonopolg term on the pipe 4 Jtnm) [3.]sin(ng)cogk2)2|. (C2)

surface is

APPENDIX B

The quality factor for a coaxial-line cavity of lengthand

radii b andd, resonating in the TEMmode, is

jou
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TM modes,

kt(n,m)

en,m,I:Cn,m,I - [Jé]COS{ncp)COQKﬂ)F

weE

1n . -
+— 7 [nlsin(ng)cogkiz) ¢

2
t(n,m)

Ki

[Jn]cos(mp)sin(k.z)i),

jwe
1n . . R
hn,m,l = Cn,m,l - EI F [Jn]sm(ngo)sm(k,z)r +

_ _k“lz'm) [J{]]COS(ngo)Sin(klz)é’)- €3
|

In the above expression$C1)-(C3) we have defined
k,=l=/L and

[Jn] :‘Jn(kt(n,m)r)

J5(Kg(n,mb)
— =Ygk ry, T
+ Yn(kt(n’m)b) n t(n,m) En,m,l
In(Kenmb)
— o Yn(kt(n,m)r)a TMn,m,Ia

Yn(kt(n,m)b)
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[Jr;]:‘]rQ(kt(n,m)r)
‘]r,w(kt(n m)b)
— Y (K )s T
Yn(kt(nym)b) n( t(n,m) ) En,m,l
Jn(kt(n,m)b) f
- Yn(kt(n,m)b) Yn(kt(n,m)r)i TMn,m,I-
(C4

The ks in [Eq. (C4)] are 1b times the zeros ofJ/] (TE
modes$ and of [J,] (TM modes, calculated for =b.

The normalization factor€, andC, ,,, are found from
the condition

+L/2

LT

|€nmi|%r dr dg dz=1 (C5)

for the TEM, modeC,=[=L In(d/b)] 2
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